Termination of the following Term Rewriting System could not be shown:

Context-sensitive rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The replacement map contains the following entries:

zeros: empty set
cons: {1}
0: empty set
and: {1}
tt: empty set
length: {1}
nil: empty set
s: {1}
take: {1, 2}


CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation

Context-sensitive rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The replacement map contains the following entries:

zeros: empty set
cons: {1}
0: empty set
and: {1}
tt: empty set
length: {1}
nil: empty set
s: {1}
take: {1, 2}

The CSR is orthogonal. By [10] we can switch to innermost.

↳ CSR
  ↳ CSRInnermostProof
CSR
      ↳ CSDependencyPairsProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation

Context-sensitive rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The replacement map contains the following entries:

zeros: empty set
cons: {1}
0: empty set
and: {1}
tt: empty set
length: {1}
nil: empty set
s: {1}
take: {1, 2}

Innermost Strategy.

Using Improved CS-DPs we result in the following initial Q-CSDP problem.

↳ CSR
  ↳ CSRInnermostProof
    ↳ CSR
      ↳ CSDependencyPairsProof
QCSDP
          ↳ QCSDependencyGraphProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {length, s, take, LENGTH, TAKE} are replacing on all positions.
For all symbols f in {cons, and, AND} we have µ(f) = {1}.
The symbols in {U} are not replacing on any position.

The ordinary context-sensitive dependency pairs DPo are:

LENGTH(cons(N, L)) → LENGTH(L)

The collapsing dependency pairs are DPc:

AND(tt, X) → X
LENGTH(cons(N, L)) → L


The hidden terms of R are:

zeros
take(M, IL)

Every hiding context is built from:

take on positions {1, 2}

Hence, the new unhiding pairs DPu are :

AND(tt, X) → U(X)
LENGTH(cons(N, L)) → U(L)
U(take(x_0, x_1)) → U(x_0)
U(take(x_0, x_1)) → U(x_1)
U(zeros) → ZEROS
U(take(M, IL)) → TAKE(M, IL)

The TRS R consists of the following rules:

zeroscons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The set Q consists of the following terms:

zeros
and(tt, x0)
length(nil)
length(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))


The approximation of the Context-Sensitive Dependency Graph contains 2 SCCs with 4 less nodes.


↳ CSR
  ↳ CSRInnermostProof
    ↳ CSR
      ↳ CSDependencyPairsProof
        ↳ QCSDP
          ↳ QCSDependencyGraphProof
            ↳ AND
QCSDP
                ↳ QCSDPSubtermProof
              ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {length, s, take} are replacing on all positions.
For all symbols f in {cons, and} we have µ(f) = {1}.
The symbols in {U} are not replacing on any position.

The TRS P consists of the following rules:

U(take(x_0, x_1)) → U(x_0)
U(take(x_0, x_1)) → U(x_1)

The TRS R consists of the following rules:

zeroscons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The set Q consists of the following terms:

zeros
and(tt, x0)
length(nil)
length(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))


We use the subterm processor [20].


The following pairs can be oriented strictly and are deleted.


U(take(x_0, x_1)) → U(x_0)
U(take(x_0, x_1)) → U(x_1)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
U(x1)  =  x1

Subterm Order


↳ CSR
  ↳ CSRInnermostProof
    ↳ CSR
      ↳ CSDependencyPairsProof
        ↳ QCSDP
          ↳ QCSDependencyGraphProof
            ↳ AND
              ↳ QCSDP
                ↳ QCSDPSubtermProof
QCSDP
                    ↳ PIsEmptyProof
              ↳ QCSDP
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {length, s, take} are replacing on all positions.
For all symbols f in {cons, and} we have µ(f) = {1}.

The TRS P consists of the following rules:
none

The TRS R consists of the following rules:

zeroscons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The set Q consists of the following terms:

zeros
and(tt, x0)
length(nil)
length(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))


The TRS P is empty. Hence, there is no (P,Q,R,µ)-chain.

↳ CSR
  ↳ CSRInnermostProof
    ↳ CSR
      ↳ CSDependencyPairsProof
        ↳ QCSDP
          ↳ QCSDependencyGraphProof
            ↳ AND
              ↳ QCSDP
QCSDP
                ↳ ConvertedToQDPProblemProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation

Q-restricted context-sensitive dependency pair problem:
The symbols in {length, s, take, LENGTH} are replacing on all positions.
For all symbols f in {cons, and} we have µ(f) = {1}.

The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(L)

The TRS R consists of the following rules:

zeroscons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The set Q consists of the following terms:

zeros
and(tt, x0)
length(nil)
length(cons(x0, x1))
take(0, x0)
take(s(x0), cons(x1, x2))


Converted QDP Problem, but could not keep Q or minimality.

↳ CSR
  ↳ CSRInnermostProof
    ↳ CSR
      ↳ CSDependencyPairsProof
        ↳ QCSDP
          ↳ QCSDependencyGraphProof
            ↳ AND
              ↳ QCSDP
              ↳ QCSDP
                ↳ ConvertedToQDPProblemProof
QDP
                    ↳ NonTerminationProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(L)

The TRS R consists of the following rules:

zeroscons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

Q is empty.
We have to consider all (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(L)

The TRS R consists of the following rules:

zeroscons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))


s = LENGTH(zeros) evaluates to t =LENGTH(zeros)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

LENGTH(zeros)LENGTH(cons(0, zeros))
with rule zeroscons(0, zeros) at position [0] and matcher [ ]

LENGTH(cons(0, zeros))LENGTH(zeros)
with rule LENGTH(cons(N, L)) → LENGTH(L)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.




We applied the Incomplete Giesl Middeldorp transformation [11] to transform the context-sensitive TRS to a usual TRS.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
QTRS
      ↳ RRRPoloQTRSProof
  ↳ Trivial-Transformation

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
andActive(tt, X) → mark(X)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(0, IL) → nil
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
andActive(tt, X) → mark(X)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(0, IL) → nil
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

andActive(tt, X) → mark(X)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(and(x1, x2)) = 2·x1 + x2   
POL(andActive(x1, x2)) = 2·x1 + x2   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(length(x1)) = 2·x1   
POL(lengthActive(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = x1 + x2   
POL(takeActive(x1, x2)) = x1 + x2   
POL(tt) = 2   
POL(zeros) = 0   
POL(zerosActive) = 0   




↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof
  ↳ Trivial-Transformation

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(0, IL) → nil
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(0, IL) → nil
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

takeActive(0, IL) → nil
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(and(x1, x2)) = x1 + 2·x2   
POL(andActive(x1, x2)) = x1 + 2·x2   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(length(x1)) = x1   
POL(lengthActive(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 2 + x1 + 2·x2   
POL(takeActive(x1, x2)) = 2 + x1 + 2·x2   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   




↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ RRRPoloQTRSProof
  ↳ Trivial-Transformation

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(nil) → 0
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

lengthActive(nil) → 0
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(and(x1, x2)) = 2·x1 + x2   
POL(andActive(x1, x2)) = 2·x1 + x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(length(x1)) = 2·x1   
POL(lengthActive(x1)) = 2·x1   
POL(mark(x1)) = x1   
POL(nil) = 1   
POL(s(x1)) = 2·x1   
POL(take(x1, x2)) = x1 + x2   
POL(takeActive(x1, x2)) = x1 + x2   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   




↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
QTRS
                  ↳ DependencyPairsProof
  ↳ Trivial-Transformation

Q restricted rewrite system:
The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(N, L)) → MARK(L)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(take(x1, x2)) → MARK(x2)
LENGTHACTIVE(cons(N, L)) → LENGTHACTIVE(mark(L))
TAKEACTIVE(s(M), cons(N, IL)) → MARK(N)
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))
MARK(zeros) → ZEROSACTIVE
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
MARK(length(x1)) → MARK(x1)
MARK(and(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → MARK(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
QDP
                      ↳ DependencyGraphProof
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(N, L)) → MARK(L)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(take(x1, x2)) → MARK(x2)
LENGTHACTIVE(cons(N, L)) → LENGTHACTIVE(mark(L))
TAKEACTIVE(s(M), cons(N, IL)) → MARK(N)
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))
MARK(zeros) → ZEROSACTIVE
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
MARK(length(x1)) → MARK(x1)
MARK(and(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → MARK(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
QDP
                          ↳ QDPOrderProof
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(N, L)) → MARK(L)
MARK(take(x1, x2)) → MARK(x2)
MARK(length(x1)) → MARK(x1)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
TAKEACTIVE(s(M), cons(N, IL)) → MARK(N)
LENGTHACTIVE(cons(N, L)) → LENGTHACTIVE(mark(L))
MARK(s(x1)) → MARK(x1)
MARK(and(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(take(x1, x2)) → MARK(x2)
TAKEACTIVE(s(M), cons(N, IL)) → MARK(N)
MARK(and(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → MARK(x1)
The remaining pairs can at least be oriented weakly.

LENGTHACTIVE(cons(N, L)) → MARK(L)
MARK(length(x1)) → MARK(x1)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
LENGTHACTIVE(cons(N, L)) → LENGTHACTIVE(mark(L))
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(LENGTHACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(TAKEACTIVE(x1, x2)) = 1 + x2   
POL(and(x1, x2)) = 1 + x1   
POL(andActive(x1, x2)) = 1 + x1   
POL(cons(x1, x2)) = x1 + x2   
POL(length(x1)) = x1   
POL(lengthActive(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 1 + x1 + x2   
POL(takeActive(x1, x2)) = 1 + x1 + x2   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   

The following usable rules [17] were oriented:

takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
zerosActivecons(0, zeros)
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
mark(0) → 0
mark(tt) → tt
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
mark(zeros) → zerosActive



↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
QDP
                              ↳ DependencyGraphProof
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(N, L)) → MARK(L)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(length(x1)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → LENGTHACTIVE(mark(L))
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
QDP
                                  ↳ QDPOrderProof
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(N, L)) → MARK(L)
MARK(length(x1)) → MARK(x1)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
LENGTHACTIVE(cons(N, L)) → LENGTHACTIVE(mark(L))
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(length(x1)) → MARK(x1)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
The remaining pairs can at least be oriented weakly.

LENGTHACTIVE(cons(N, L)) → MARK(L)
LENGTHACTIVE(cons(N, L)) → LENGTHACTIVE(mark(L))
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(LENGTHACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(and(x1, x2)) = 1 + x2   
POL(andActive(x1, x2)) = 1 + x2   
POL(cons(x1, x2)) = x1 + x2   
POL(length(x1)) = 1 + x1   
POL(lengthActive(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(take(x1, x2)) = x2   
POL(takeActive(x1, x2)) = x2   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   

The following usable rules [17] were oriented:

takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
zerosActivecons(0, zeros)
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
mark(0) → 0
mark(tt) → tt
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
mark(zeros) → zerosActive



↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
QDP
                                      ↳ DependencyGraphProof
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(N, L)) → MARK(L)
LENGTHACTIVE(cons(N, L)) → LENGTHACTIVE(mark(L))
MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
QDP
                                            ↳ UsableRulesProof
                                          ↳ QDP
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                            ↳ UsableRulesProof
QDP
                                                ↳ QDPSizeChangeProof
                                          ↳ QDP
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

MARK(s(x1)) → MARK(x1)
MARK(cons(x1, x2)) → MARK(x1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
QDP
                                            ↳ Narrowing
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(N, L)) → LENGTHACTIVE(mark(L))

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule LENGTHACTIVE(cons(N, L)) → LENGTHACTIVE(mark(L)) at position [0] we obtained the following new rules:

LENGTHACTIVE(cons(y0, zeros)) → LENGTHACTIVE(zerosActive)
LENGTHACTIVE(cons(y0, cons(x0, x1))) → LENGTHACTIVE(cons(mark(x0), x1))
LENGTHACTIVE(cons(y0, s(x0))) → LENGTHACTIVE(s(mark(x0)))
LENGTHACTIVE(cons(y0, length(x0))) → LENGTHACTIVE(lengthActive(mark(x0)))
LENGTHACTIVE(cons(y0, and(x0, x1))) → LENGTHACTIVE(andActive(mark(x0), x1))
LENGTHACTIVE(cons(y0, nil)) → LENGTHACTIVE(nil)
LENGTHACTIVE(cons(y0, 0)) → LENGTHACTIVE(0)
LENGTHACTIVE(cons(y0, take(x0, x1))) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
LENGTHACTIVE(cons(y0, tt)) → LENGTHACTIVE(tt)



↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Narrowing
QDP
                                                ↳ DependencyGraphProof
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(y0, zeros)) → LENGTHACTIVE(zerosActive)
LENGTHACTIVE(cons(y0, cons(x0, x1))) → LENGTHACTIVE(cons(mark(x0), x1))
LENGTHACTIVE(cons(y0, s(x0))) → LENGTHACTIVE(s(mark(x0)))
LENGTHACTIVE(cons(y0, length(x0))) → LENGTHACTIVE(lengthActive(mark(x0)))
LENGTHACTIVE(cons(y0, and(x0, x1))) → LENGTHACTIVE(andActive(mark(x0), x1))
LENGTHACTIVE(cons(y0, nil)) → LENGTHACTIVE(nil)
LENGTHACTIVE(cons(y0, 0)) → LENGTHACTIVE(0)
LENGTHACTIVE(cons(y0, tt)) → LENGTHACTIVE(tt)
LENGTHACTIVE(cons(y0, take(x0, x1))) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 4 less nodes.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
QDP
                                                    ↳ Narrowing
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(y0, zeros)) → LENGTHACTIVE(zerosActive)
LENGTHACTIVE(cons(y0, cons(x0, x1))) → LENGTHACTIVE(cons(mark(x0), x1))
LENGTHACTIVE(cons(y0, length(x0))) → LENGTHACTIVE(lengthActive(mark(x0)))
LENGTHACTIVE(cons(y0, and(x0, x1))) → LENGTHACTIVE(andActive(mark(x0), x1))
LENGTHACTIVE(cons(y0, take(x0, x1))) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule LENGTHACTIVE(cons(y0, zeros)) → LENGTHACTIVE(zerosActive) at position [0] we obtained the following new rules:

LENGTHACTIVE(cons(y0, zeros)) → LENGTHACTIVE(cons(0, zeros))
LENGTHACTIVE(cons(y0, zeros)) → LENGTHACTIVE(zeros)



↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Narrowing
QDP
                                                        ↳ DependencyGraphProof
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(y0, cons(x0, x1))) → LENGTHACTIVE(cons(mark(x0), x1))
LENGTHACTIVE(cons(y0, length(x0))) → LENGTHACTIVE(lengthActive(mark(x0)))
LENGTHACTIVE(cons(y0, zeros)) → LENGTHACTIVE(cons(0, zeros))
LENGTHACTIVE(cons(y0, and(x0, x1))) → LENGTHACTIVE(andActive(mark(x0), x1))
LENGTHACTIVE(cons(y0, zeros)) → LENGTHACTIVE(zeros)
LENGTHACTIVE(cons(y0, take(x0, x1))) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 1 less node.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ AND
QDP
                                                              ↳ UsableRulesProof
                                                            ↳ QDP
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(y0, zeros)) → LENGTHACTIVE(cons(0, zeros))

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ AND
                                                            ↳ QDP
                                                              ↳ UsableRulesProof
QDP
                                                            ↳ QDP
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(y0, zeros)) → LENGTHACTIVE(cons(0, zeros))

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ AND
                                                            ↳ QDP
QDP
                                                              ↳ QDPOrderProof
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(y0, cons(x0, x1))) → LENGTHACTIVE(cons(mark(x0), x1))
LENGTHACTIVE(cons(y0, length(x0))) → LENGTHACTIVE(lengthActive(mark(x0)))
LENGTHACTIVE(cons(y0, and(x0, x1))) → LENGTHACTIVE(andActive(mark(x0), x1))
LENGTHACTIVE(cons(y0, take(x0, x1))) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


LENGTHACTIVE(cons(y0, length(x0))) → LENGTHACTIVE(lengthActive(mark(x0)))
LENGTHACTIVE(cons(y0, and(x0, x1))) → LENGTHACTIVE(andActive(mark(x0), x1))
The remaining pairs can at least be oriented weakly.

LENGTHACTIVE(cons(y0, cons(x0, x1))) → LENGTHACTIVE(cons(mark(x0), x1))
LENGTHACTIVE(cons(y0, take(x0, x1))) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(LENGTHACTIVE(x1)) = x1   
POL(and(x1, x2)) = 0   
POL(andActive(x1, x2)) = 0   
POL(cons(x1, x2)) = 1   
POL(length(x1)) = 0   
POL(lengthActive(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = 0   
POL(take(x1, x2)) = 1   
POL(takeActive(x1, x2)) = 1   
POL(tt) = 0   
POL(zeros) = 0   
POL(zerosActive) = 0   

The following usable rules [17] were oriented:

takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))
mark(s(x1)) → s(mark(x1))
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(and(x1, x2)) → andActive(mark(x1), x2)



↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ AND
                                                            ↳ QDP
                                                            ↳ QDP
                                                              ↳ QDPOrderProof
QDP
                                                                  ↳ QDPOrderProof
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(y0, cons(x0, x1))) → LENGTHACTIVE(cons(mark(x0), x1))
LENGTHACTIVE(cons(y0, take(x0, x1))) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


LENGTHACTIVE(cons(y0, cons(x0, x1))) → LENGTHACTIVE(cons(mark(x0), x1))
The remaining pairs can at least be oriented weakly.

LENGTHACTIVE(cons(y0, take(x0, x1))) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
Used ordering: Polynomial interpretation [25]:

POL(0) = 0   
POL(LENGTHACTIVE(x1)) = x1   
POL(and(x1, x2)) = 1   
POL(andActive(x1, x2)) = 1   
POL(cons(x1, x2)) = 1 + x2   
POL(length(x1)) = 0   
POL(lengthActive(x1)) = 0   
POL(mark(x1)) = 1 + x1   
POL(nil) = 1   
POL(s(x1)) = 0   
POL(take(x1, x2)) = x2   
POL(takeActive(x1, x2)) = x2   
POL(tt) = 1   
POL(zeros) = 0   
POL(zerosActive) = 1   

The following usable rules [17] were oriented:

takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
zerosActivecons(0, zeros)
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
mark(0) → 0
mark(tt) → tt
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
mark(zeros) → zerosActive



↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ DependencyPairsProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
                            ↳ QDP
                              ↳ DependencyGraphProof
                                ↳ QDP
                                  ↳ QDPOrderProof
                                    ↳ QDP
                                      ↳ DependencyGraphProof
                                        ↳ AND
                                          ↳ QDP
                                          ↳ QDP
                                            ↳ Narrowing
                                              ↳ QDP
                                                ↳ DependencyGraphProof
                                                  ↳ QDP
                                                    ↳ Narrowing
                                                      ↳ QDP
                                                        ↳ DependencyGraphProof
                                                          ↳ AND
                                                            ↳ QDP
                                                            ↳ QDP
                                                              ↳ QDPOrderProof
                                                                ↳ QDP
                                                                  ↳ QDPOrderProof
QDP
  ↳ Trivial-Transformation

Q DP problem:
The TRS P consists of the following rules:

LENGTHACTIVE(cons(y0, take(x0, x1))) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))

The TRS R consists of the following rules:

mark(zeros) → zerosActive
zerosActivezeros
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(nil) → nil
mark(s(x1)) → s(mark(x1))
zerosActivecons(0, zeros)
lengthActive(cons(N, L)) → s(lengthActive(mark(L)))
takeActive(s(M), cons(N, IL)) → cons(mark(N), take(M, IL))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We applied the Trivial transformation to transform the context-sensitive TRS to a usual TRS.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

and(tt, X) → X
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(and(x1, x2)) = 1 + x1 + x2   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(length(x1)) = 2·x1   
POL(nil) = 0   
POL(s(x1)) = 2·x1   
POL(take(x1, x2)) = 2·x1 + 2·x2   
POL(tt) = 1   
POL(zeros) = 0   




↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
length(nil) → 0
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

length(nil) → 0
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(length(x1)) = 2·x1   
POL(nil) = 2   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 2 + 2·x1 + x2   
POL(zeros) = 0   




↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
QTRS
              ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
length(cons(N, L)) → s(length(L))
take(0, IL) → nil
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

take(0, IL) → nil
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(length(x1)) = 2·x1   
POL(nil) = 1   
POL(s(x1)) = x1   
POL(take(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(zeros) = 0   




↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
QTRS
                  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ Overlay + Local Confluence
QTRS
                      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The set Q consists of the following terms:

zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(L)
ZEROSZEROS
TAKE(s(M), cons(N, IL)) → TAKE(M, IL)

The TRS R consists of the following rules:

zeroscons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The set Q consists of the following terms:

zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ Overlay + Local Confluence
                    ↳ QTRS
                      ↳ DependencyPairsProof
QDP
                          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(L)
ZEROSZEROS
TAKE(s(M), cons(N, IL)) → TAKE(M, IL)

The TRS R consists of the following rules:

zeroscons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The set Q consists of the following terms:

zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ Overlay + Local Confluence
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
QDP
                                ↳ UsableRulesProof
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAKE(s(M), cons(N, IL)) → TAKE(M, IL)

The TRS R consists of the following rules:

zeroscons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The set Q consists of the following terms:

zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ Overlay + Local Confluence
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QReductionProof
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAKE(s(M), cons(N, IL)) → TAKE(M, IL)

R is empty.
The set Q consists of the following terms:

zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))



↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ Overlay + Local Confluence
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
QDP
                                        ↳ QDPSizeChangeProof
                              ↳ QDP
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TAKE(s(M), cons(N, IL)) → TAKE(M, IL)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ Overlay + Local Confluence
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
QDP
                                ↳ UsableRulesProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(L)

The TRS R consists of the following rules:

zeroscons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The set Q consists of the following terms:

zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ Overlay + Local Confluence
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QReductionProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(L)

R is empty.
The set Q consists of the following terms:

zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))



↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ Overlay + Local Confluence
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
QDP
                                        ↳ QDPSizeChangeProof
                              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(N, L)) → LENGTH(L)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ Overlay + Local Confluence
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
QDP
                                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

ZEROSZEROS

The TRS R consists of the following rules:

zeroscons(0, zeros)
length(cons(N, L)) → s(length(L))
take(s(M), cons(N, IL)) → cons(N, take(M, IL))

The set Q consists of the following terms:

zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ Overlay + Local Confluence
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
QDP
                                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

ZEROSZEROS

R is empty.
The set Q consists of the following terms:

zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

zeros
length(cons(x0, x1))
take(s(x0), cons(x1, x2))



↳ CSR
  ↳ CSRInnermostProof
  ↳ Incomplete Giesl Middeldorp-Transformation
  ↳ Trivial-Transformation
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ RRRPoloQTRSProof
            ↳ QTRS
              ↳ RRRPoloQTRSProof
                ↳ QTRS
                  ↳ Overlay + Local Confluence
                    ↳ QTRS
                      ↳ DependencyPairsProof
                        ↳ QDP
                          ↳ DependencyGraphProof
                            ↳ AND
                              ↳ QDP
                              ↳ QDP
                              ↳ QDP
                                ↳ UsableRulesProof
                                  ↳ QDP
                                    ↳ QReductionProof
QDP

Q DP problem:
The TRS P consists of the following rules:

ZEROSZEROS

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.